Responsible Machine Learning Lecture 2: ML Basics

CS 4973-05

Fall 2023

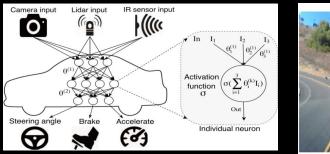
Instructor: Avijit Ghosh ghosh.a@northeastern.edu Northeastern University, Boston, MA

Today AI/ML is ubiquitous

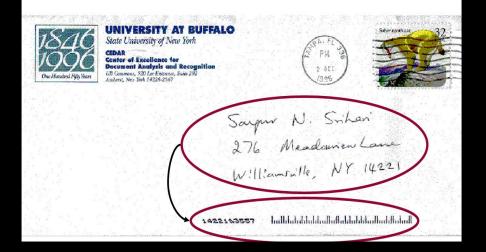
- Automate routine labor
 - Search

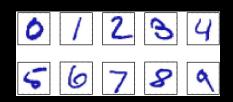
- Understand speech
 - SIRI, Alexa

Autonomous Vehicles



Rule-based programming is hard

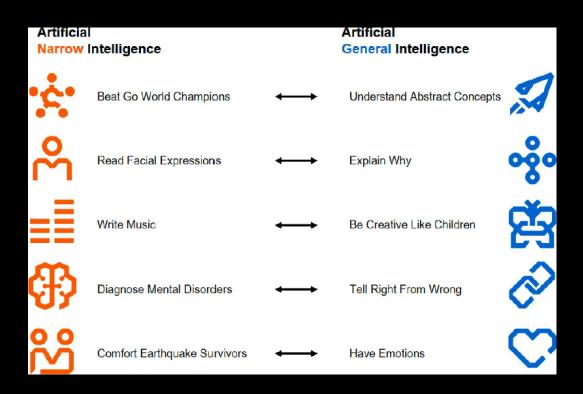




- Many handcrafted rules and exceptions
- Better learning from training set
- Handwriting recognition by a program cannot be done without ML!

Al Paradox

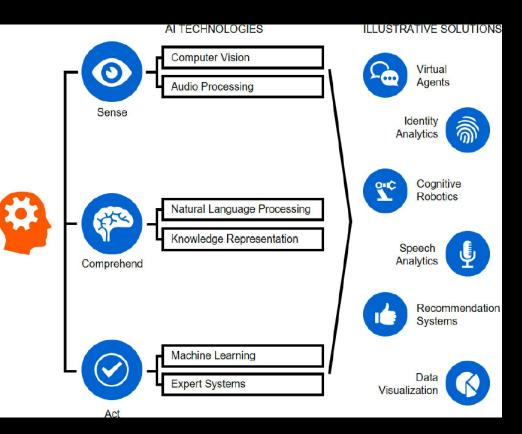
- Hard problems for people are easy for Al
- Easy problems for people are hard for Al



What Tasks Require Intelligence?

- Reasoning - Puzzles, Judgments
- Planning - Action sequences
- Learning

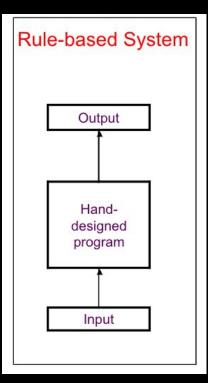
 Improve with data
- Natural language
- Integrating skills
- Abilities to sense, act



Everyday life needs knowledge

- Knowledge is intuitive and subjective
 - Key challenge of AI is how to get this informal knowledge into a computer
- Knowledge-based Approach
 - Hard-code knowledge in a formal language
 - Computer can reason about statements in these languages using inference rules
 - Examples:
 - Expert systems for diagnosis (MYCIN, CADUCEUS)
 - Design (VAX)

Knowledge-Based Al

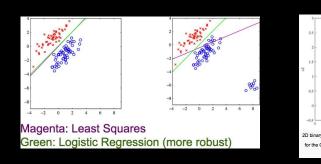


Disadvantage: Unwieldy process

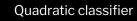
Time of human experts People struggle to formalize rules with enough complexity to describe the world

The Machine Learning Approach

- Difficulties of hard-coded approach suggests:
 - Allow computers to learn from experience
- First determine what features to use
- Learn to map the features to outputs



Linear classifier



assification with Naive Baves. A density contour is draw

shown in ren

each class and the decision boundary it

The ML Approach

Data Collection

Models

Model Selection

Prob. Dist. to Model Process

Parameter Estimation

Values/Distributions

Inference

Find responses to queries

Decision (Inference OR Testing)

Generalization

(Training)

ML Problem Types

- 1. Based on Type of Data
 - Supervised, Unsupervised, Semi-supervised
 - Reinforcement Learning
- 2. Based on Type of Output
 - Regression, Classification
- 3. Based on Type of Model
 - Generative, Discriminative

Supervised Learning

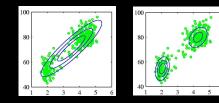
Training Data Labelled

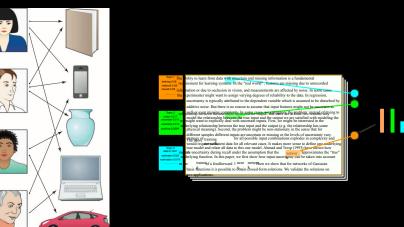
- Most widely used methods of ML, e.g.,
 - Spam classification of email
 - Face recognizers over images
 - Medical diagnosis systems
- Inputs x are vectors or more complex objects
 - documents, DNA sequences or graphs
- Outputs are binary, multiclass(K),
 - Multi-label (more than one class), ranking,
 - Structured:
 - **y** is a graph satisfying constraints, e.g., POS tagging
 - Real-valued or mixture of discrete and real-valued

Unsupervised Learning

Unlabeled data assuming underlying structure

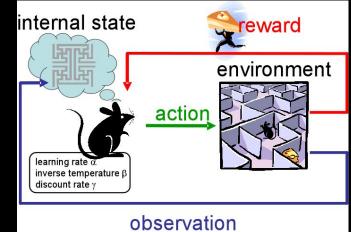
- 1. Clustering to find partition of data
- 2. Identify a low-dimensional manifold
 - PCA, Autoencoder
- 3. Topic modeling
 - Topics are distributions over words
 - Document: a distribution across topics
 - Methods: SVD, Collaborative Filtering
- 4. Recommendation Systems
 - Data links between users and items
 - Suggest other items to user
 - Solution: SVD, Collaborative Filtering



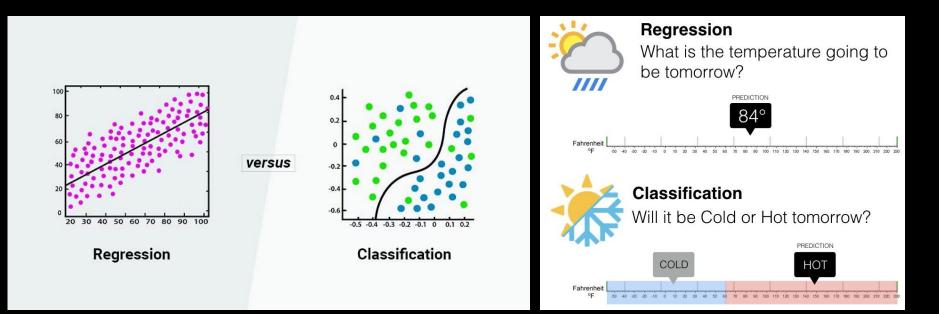


Reinforcement Learning

- Training data in between supervised/unsupervised
 - Indication of whether action is correct or not
 - Reward signal may refer to entire input sequence
 - Mouse is given a reward/punishment for an action
 - Policies: what actions to take in a particular situation
 - Utility estimation: how good is state (used by policy)
- No supervised output but delayed reward
- Credit assignment
 - what was responsible for outcome
- Applications:
 - Game playing, Robot in a maze, Multiple agents, partial observability,...



Regression



Regression: Learning to Rank

Input (x;):

(d Features of Query-URL pair)

- Log frequency of query in anchor text
- Query word in color on page
- # of images on page
- # of (out) links on page
- PageRank of page
- **URL** length
- URL contains "~"
- Page length
- Embedding vectors

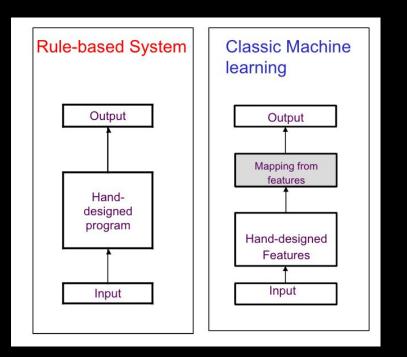
Output (y):

Relevance Value

Target Variable

- Point-wise (0,1,2,3)
- Regression returns continuous value
- Allows fine-grained ranking of URLs

Two Paradigms of Al



Shaded boxes indicate components that can learn from data

Designing the right set of features

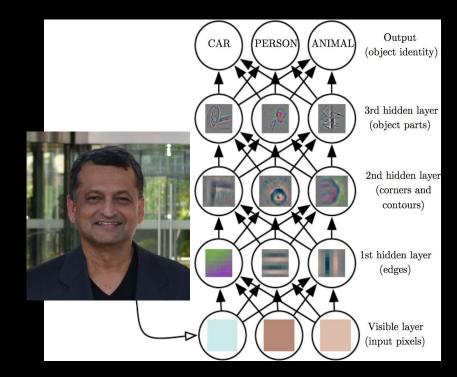
- Simple Machine Learning depends heavily on representation of given data
- For detecting a car in photographs
 - Tire shape difficult in terms of pixel values
 - Shadows, Glare, Occlusion etc.

Representation Learning

- Solution: use ML to not only learn mapping from representation to output but representation itself
 - Better results than hand-coded representations
- Allows AI systems to rapidly adapt to new tasks
 - Designing features can take great human effort
 - Can take decades for a community of researchers
- Does not need programmer to have deep knowledge of the problem domain

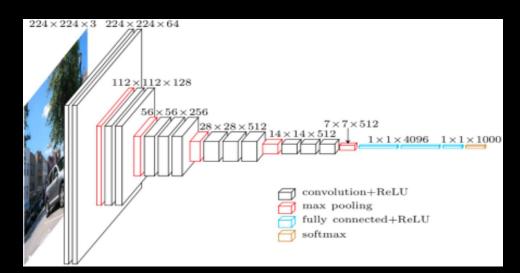
Feature Learning for Classification

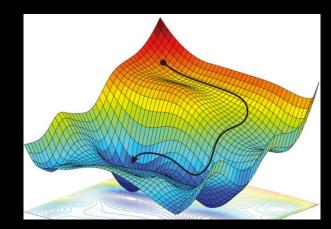
- Function to map pixels to object identity is complicated
- Series of hidden layers extract increasingly abstract features
- Final decision made by a simple classifier



Deep Learning

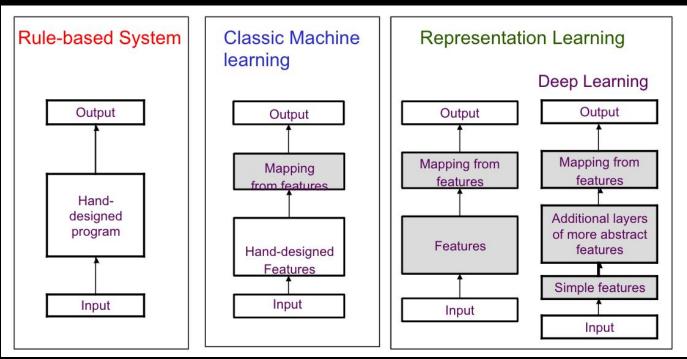
- Understand the world as hierarchy of concepts
 - How these concepts are built on top of each other is deep, with many layers
 - Weights learnt by gradient descent





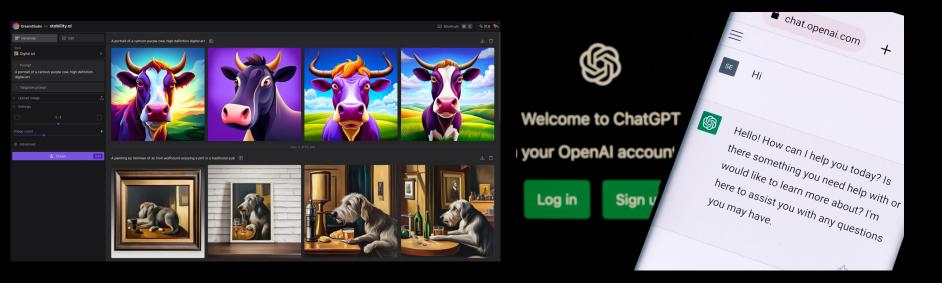
 $\mathbf{x}^{t+1} = \mathbf{x}^t - \varepsilon \nabla f(\mathbf{x}^t)$

Paradigms of Al



Shaded boxes indicate components that can learn from data

And Finally: Generative Al



Stable Diffusion (Image Generation)

ChatGPT (Text Generation)

Thank You!

No homework next class

• We will be doing Python+ML setup and some example code in class, led by Jeffrey

