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Audits of real systems,

Measurement and evaluation of
algorithmic fairness, and

Challenges of incorporating algorithmic
fairness interventions in the real world.



e 3rd-year PhD Candidate working with
Christo Wilson

e Areas of study include:
o Algorithm auditing (controlled
experiments and causal inference)
o Platform power (e.g. Google + Amazon
self-preferencing)

jlgleason.github.io



Please
I nt rOd u Ce e What made you want to take this class?

e What problems are you excited to solve?
Yourself
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Class Schedule
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Class: Ryder 277

Tuesdays 11:45am - 1:25pm
Thursdays 2:50pm - 4:30pm
Office Hours:

Avijit: Thursdays 5pm-6pm

Jeffrey: Wednesdays 4pm - 5pm



Class Format
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Reading assignments: 30%
Coding assignments: 15%
Quizzes: 10%

Final project + Term paper: 45%



| will assign portions of research papers to read to prepare for next day’s
lecture. A brief reading assignment quizlet will accompany the readings.
You are required to upload your answers to the reading assignment
questions BEFORE class starts.

Helpful guide: How to read a research paper
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https://www.eecs.harvard.edu/~michaelm/postscripts/ReadPaper.pdf

Less frequent than reading assignments, few and far between. Expected
language: Python 3, preferably on Jupyter notebooks
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Short, multiple choice quizzes, one for midterm and one for finals. Prep
level needed low as long as you were paying attention in class.
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The most important component of this class. You are expected to work on a final
project in groups of two. This project involves three components:

1. Reading research papers/blogs on the topic you have chosen
2. Downloading relevant data and writing code to get results
3

A term paper describing what you did. The format is usually:
Introduction > Related work > Methods > Results > Conclusion > Limitations and Future Work

o Qverleaf Latex Format

We will help you in every step of the way! While this is due at the end of the semester, itis
good to start planning early and keep me updated on what you are doing.
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https://www.overleaf.com/read/knhfxfjpsqsm

IS
powerful






What does
Responsible
ML mean?




e Fairness/Bias

w h at d Oes e Explainability
ResponSi ble e Transparency
M L mea n? e Privacy

e Safety

e Regulations/Policy
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http://www.youtube.com/watch?v=TWWsW1w-BVo

Predictive systems are on therise.
Machine learning and Al technologies
have generated enormous benefits for

business.

Credits: Chris Walker - Data Science @ llluminate Education



How Artificial Intelligence Is Revolutionizing the Legal
Practice

Vol. 43 No. 1

' GUEST
How A.IL 1s revolutionizing today’s workplace

ADELYN ZHOU, TOPBOTS

The Marriage of Artificial Intelligence (Al) In
Sports is Revolutionizing the Sector

Date ; 0 @ 13D Research ( Follow )

Source :

Artificial Intelligence is on the precipice of
revolutionizing medical diagnosis.




A Provocation:

Should we trust a machine
to make the right decisions
about a person’s future?

Credits: Chris Walker - Data Science @ llluminate Education



Skepticism is healthy.

Businesses have learned some painful
lessons about the dangers of machines
creating their own algorithms.

Credits: Chris Walker - Data Science @ llluminate Education
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Google
Microsoft deletes 'teen girl' : :
Al after it became a Hitlor- | G008l€ says sorry for racist auto-tag in

loving sex robot within 24 photo app

hOllI'S Google Photos labelled a picture of two black people as ‘gorillas’

(Fe ) (W) (@) &) Google Maps and Flickr have also suffered from race-related problems

teCh BUSINESS CULTURE GADGETS FUTURE STARTUPS

Connect

Flickr's new auto-tags are racist and
offensive

by David Goldman @DavidGoldmanCNN
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How do algorithms become biased?



if person.ethnicity == 'African-American".

Let's play spot

credit.deny()

the bias...

credit.grant()




The bias is..- if person.ethnicity == 'African-American".

credit.deny()

Intentional.
O bVious- credit.grant()

else:

(and horriblel)




Before machine learning, algorithms were written only
by humans.

Only a malicious developer would write such a rule.

But problems like these are easy to fix.

Northeastern
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if person.zip_code == 38131:

Can you spot

credit.deny()

else:

the bias here?

credit.grant()




Seems harmless...

until you learn that f person.zip_code == 38131;
- = credit.deny()
zip code 38131is . '
I‘Ieal‘ly 100% credit.grant()

African-American




The bias is... T
Maybe crcitdeny0
Intentional. e
Less obvious.

credit.grant()




A statistical model might suggest such a
rule — less obvious, but equally bad.

A principled developer or statistician can
still catch these if they are vigilant. This is
still relatively easy to fix.

eastern ) .
University Credits: Chris Walker - Data Science @ llluminate Education
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Now our algorithm is made of hundreds of
decision points. Each one might be biased.

Combinations of decision points might be
biased too. That's millions of possibilities!
Not so easy to fix.

Northeast )
ortheastern Credits: Chris Walker - Data Science @ llluminate Education
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Another Provocation:

IT the builder of a system
can't spot the bias, what
hope do we have of
correcting it?

Credits: Chris Walker - Data Science @ llluminate Education



Yet Another
Provocation:

How accurately do you
think vendors report their
system's capabilities?

Credits: Chris Walker - Data Science @ llluminate Education



Principles Worth Defending

Fairness

Transparency

Remediation

How can a computer
judge a person on
something they haven't
even done yet?

How exactly was the
decision made? What
data were used?

To whom does a person
complain when things
go sideways?

How can we make it
right?

Northeastern
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Credits: Chris Walker - Data Science @ llluminate Education



T ha n k YO u ! Readings for Next Class:

e Machine learning: Trends,

perspectives, and prospects
- M. I. Jordan and T. M. Mitchell
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http://cs.cmu.edu/~tom/pubs/Science-ML-2015.pdf
http://cs.cmu.edu/~tom/pubs/Science-ML-2015.pdf

