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There exist some 
real world 
problems…
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Algorithm and metric design
● Intersectionality of bias
● Model bias is not necessarily a 

data problem

Runtime challenges
● Missing demographic 

information
● Adversarial attackers can make 

the algorithm more unfair
● Models may become unfair in a 

live deployment over time

Transparency and Accountability
● Not many transparent 

real-world audits
● Decisions are not always 

correlated with outcomes
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Research Questions

● RQ1: How does noise in demographic information as an input to a fair ML algorithm adversely 
impact the intended fairness of the outcomes for different subgroups?

● RQ2: How can fair ML models be attacked by adversarial actors to create even more unfairness?

● RQ3: In fair ML techniques that deliberately do not use protected attributes, how do their 
theoretical guarantees hold up in real life when compared against actual ground truth?

● RQ4: Do fair ML models, once deployed in a production system, continue to remain fair in the face 
of changing data and feature-output relationships? If so, how can such unfairness be measured 
and mitigated?
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Possible Mitigation to Protected Attribute Noise

● Use inferred attributes only when they are 
extremely accurate for all intersectional 
groups

● Human-in-the-loop solutions (privacy 
aware), for instance Project Lighthouse

Airbnb’s Project Lighthouse
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Expensive Solutions!



When Fair Classification Meets Noisy Protected Attributes

Uncertainty Aware Algorithms

There is a newer class of fair algorithms 
that theoretically achieve fair predictions 
in spite of partial or complete absence of 
protected attributes. 

12



How do uncertainty aware fair algorithms stack up against fair 
algorithms that require access to demographic attributes in a 

head-to-head comparison?

Case study: fair classification.
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When Fair Classification Meets Noisy Protected Attributes

Terminology

● Unconstrained Classifiers
● Classically Fair Classifiers
● Noise-Tolerant Fair Classifiers
● Demographic-Blind Fair Classifiers
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When Fair Classification Meets Noisy Protected Attributes

Unconstrained Classifiers

● Logistic Regression (LR)
● Random Forest (RF)
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Unconstrained Classifiers do not have any fairness objectives and are 
solely optimized for accuracy.



LR and RF
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• Logistic Regression (LR) is demographic-aware because it takes all features 
(including protected attributes) as model inputs at both train and test time, it is 
not designed to achieve any fairness criteria.

• Random Forest (RF) is an ensemble method for classification built out of 
decision trees. Like LR, we train RF classifiers on all input features including 
protected attributes.



When Fair Classification Meets Noisy Protected Attributes

Classically Fair Classifiers

● Sample Reweighting (SREW)
● Learned Fair Representation (LFR)
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Classically Fair Classifiers take protected attributes as input and attempt to 
achieve demographic fairness, via different methods:

● Calibrated Equalized Odds (CALEQ) 
● Reject Option Classifier (ROC)

● Adversarial Debiasing (ADDEB)
● Exponentiated Gradient Reduction (EGR)
● Grid Search Reduction (GSR) 

Preprocessing:

In-processing:

Post-processing:



Sample Reweighting
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• Sample Reweighting (SREW) is a pre-processing technique that takes each 
(group, label) combination in the training data and assigns rebalanced weights to 
them. The goal of this procedure is to remove imbalances in the training data, 
with the ultimate aim of ensuring fairness before the classifier is trained  



Learned Fair Representation
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● Learned Fair Representation (LFR) is a pre-processing technique that 
converts the input features into a latent encoding that is designed to 
represent the training data well while simultaneously hiding protected 
attribute information from the classifier 



Adversarial Debiasing
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● Adversarial Debiasing (ADDEB) is an in-process technique that trains a 
classifier to maximize accuracy while simultaneously reducing an 
adversarial network's ability to determine the protected attributes from the 
predictions. 



EGR and GSR
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● Exponentiated Gradient Reduction (EGR) is an in-process technique that 
reduces fair classification to a set of cost-sensitive classification problems, 
essentially treating the main classifier itself as a black box and forcing the 
predictions to be the most accurate under a given fairness constraint. In 
this case, the constraint is solved as a saddle point problem using the 
exponentiated gradient algorithm. 

● Grid Search Reduction (GSR) uses the same set of cost-sensitive 
classification problems approach as EGR, except in this case the 
constraints are solved using the grid search algorithm.



CALEQ and ROC
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● Calibrated Equalized Odds (CALEQ) is a post-processing technique that 
optimizes the calibrated classifier score output to find the probabilities that 
it uses to change the output labels, with an equalized odds objective.

● Reject Option Classifier (ROC) is a post-processing technique that swaps 
favorable and unfavorable outcomes for privileged and unprivileged groups 
around the decision boundaries with the highest uncertainty.

Note that the CALEQ and ROC algorithms have access to protected attributes at 
both train and test time, while the other classifiers only have access to protected 
attributes at training time.



When Fair Classification Meets Noisy Protected Attributes

Noise-Tolerant Fair Classifiers

● Modified Distributionally Robust Optimization (MDRO)
● Soft Group Assignments (SOFT)
● Private Learning (PRIV)
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Noise-Tolerant Fair Classifiers require access to protected attributes 
but account for uncertainty (noise) in the data.



Noise Tolerant Classifiers
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●  Modified Distributionally Robust Optimization (MDRO) is an extension of the 
Distributionally Robust Optimization (DRO) algorithm that adds a maximum total 
variation distance in the DRO procedure. By assuming a noise model for the protected 
attributes, it aims to provide tighter bounds for DRO.

● Soft Group Assignments (SOFT) is a theoretically robust approach that first performs 
“soft” group assignments and then performs classification, with the idea being that if an 
algorithm is fair in terms of those robust criteria for noisy groups, then they must also be 
fair for true protected groups.

● Private Learning (PRIV) is an approach by that uses differential privacy techniques to 
learn a fair classifier while having partial access to protected attributes. The approach 
requires two steps. The first step is to obtain locally private versions of the protected 
attributes. Second, PRIV tries to create a fair classifier based on the private attributes. 
For this study, we select the privacy level hyperparameter to be a medium value (zero).



When Fair Classification Meets Noisy Protected Attributes

Demographic-Blind Fair Classifiers

● Adversarially Reweighted Learning (ARL)
● Distributionally Robust Optimization (DRO)
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Demographic-Blind Fair Classifiers aim to achieve fairness without 
requiring access to protected attributes at all.



Demographic-Blind Classifiers
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● Adversarially Reweighted Learning (ARL) harnesses non-protected attributes and 
labels by utilizing the computational separability of these training instances to divide 
them into subgroups, and then uses an adversarial reweighting approach on the 
subgroups to improve classification fairness.
 

● Distributionally Robust Optimization (DRO) is an algorithm that attempts to minimize 
the worst case risk of all groups that are close to the empirical distribution. In the spirit 
of Rawlsian distributive justice, the algorithm tries to control the risk to minority groups 
while being oblivious to their identities.



Experiments
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When Fair Classification Meets Noisy Protected Attributes

Metrics

28

● Accuracy:                                     number of correct classifications
test dataset size

● Equal Odds Difference:           (FPRunpriv−FPRpriv)+(TPRunpriv−TPRpriv)
         2



When Fair Classification Meets Noisy Protected Attributes

Datasets
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● Public Coverage - The task is to predict whether an individual (who is low 
income and not eligible for Medicare) was covered under public health 
insurance. 

● Employment - The task is to predict whether an individual (between the 
ages of 16 and 90), is employed. 

● Law School Admissions - The task is to predict whether a student was 
admitted to law school. 

● Diabetes - The task is to predict whether a diabetes patient was 
readmitted to the hospital for treatment after 30 days.

Each dataset had binary sex as part of the input features. 



When Fair Classification Meets Noisy Protected Attributes

Simulated Noise
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1. Randomly flip protected attribute labels (binary sex) in each dataset with 
a probability between 0.1 and 0.9 (noise). 

2. Split the synthetically altered dataset 80:20 and train 14 algorithms on 
the training set using the noisy (flipped) labels. 

3. Calculate accuracy and EOD, measuring EOD with the original sex labels. 

4. Repeat Steps 1-3 ten times for each noise value to ensure statistical 
power and metric stability.



When Fair Classification Meets Noisy Protected Attributes

Feature Importance
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Feature importances are 
calculated for each classifier and 
each dataset with KernelSHAP.



When Fair Classification Meets Noisy Protected Attributes

Results: Stability - no noise 
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Results: Stability - no noise 
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LFR, MDRO, SOFT, and DRO have unstable accuracy, the others seem to be pretty stable over 
different datasets
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Results: Stability - no noise 

34
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Results: Stability - no noise 
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 The unconstrained classifiers (LR and RF) were relatively stable and, in some cases, achieved 
roughly equalized odds



When Fair Classification Meets Noisy Protected Attributes

Results: Stability - no noise 
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The classical fair classifier group contained the two least fair classifiers in these experiments 
(CALEQ and ROC), while the other pre-processing and in-process algorithms performed relatively 

better



When Fair Classification Meets Noisy Protected Attributes

Results: Stability - no noise 
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Among the noise-tolerant fair classifiers, Soft Group Assignment (SOFT) was unstable on three 
out of four dataset, while the other two classifiers (MDRO and PRIV) were relatively more stable and 

more fair.



When Fair Classification Meets Noisy Protected Attributes

Results: Stability - no noise 
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The two demographic-blind fair classifiers (ARL and DRO) were unstable on the Public Coverage 
dataset and did not achieve equalized odds on the Employment dataset. However, ARL and DRO 

were stable and fair on the remaining two datasets.



When Fair Classification Meets Noisy Protected Attributes

Results: Stability - no noise 
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Six algorithms have both good performance and stable metrics



When Fair Classification Meets Noisy Protected Attributes

Results: Trends with Noise
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When Fair Classification Meets Noisy Protected Attributes

Results: Trends with Noise
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We observe that the LFR, MDRO, SOFT, and DRO classifiers had 
poor accuracy and noise dependent fluctuations.

Remember that these were also the ones that had unstable 
accuracy, as we saw earlier!
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Results: Trends with Noise
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The Fairness performance trends are more complicated.



When Fair Classification Meets Noisy Protected Attributes

Results: Trends with Noise
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The unconstrained classifiers (LR and RF) moved in the same 
direction for every dataset, either rising or falling with noise.
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Results: Trends with Noise
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ROC generated unfair outputs over all four datasets, at every 
noise level. 
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Results: Trends with Noise
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The SOFT classifier also exhibited some variable behavior: on 
the Employment dataset EOD rose with noise, and on the Public 
Coverage dataset it failed to achieve equal odds at higher noise 
levels.



When Fair Classification Meets Noisy Protected Attributes

Results: Trends with Noise
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Overall, unstable classifiers continued to have problems in the 
presence of noise, and additionally, unconstrained classifiers 
were also unreliable in the presence of noise.



When Fair Classification Meets Noisy Protected Attributes

Results: Feature Importance
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Now we look at how important the 
protected feature (sex) was to 
each of these models.



When Fair Classification Meets Noisy Protected Attributes

Results: Feature Importance
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EGR and GSR are designed to only 
use protected attributes at train 
time but not test time, and ARL 
and DRO do not use protected 
attributes at any point.



When Fair Classification Meets Noisy Protected Attributes

Results: Feature Importance
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Four of the classifiers that exhibited 
consistently poor 
performance—LFR, MDRO, and 
SOFT, and ROC —learned to weight 
the sex feature higher than other 
features, which may point to the root 
cause of their accuracy and fairness 
issues.



When Fair Classification Meets Noisy Protected Attributes

Results: Feature Importance
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The two unconstrained classifiers (LR 
and RF), and one classically fair 
classifier, CALEQ, exhibited changing 
EOD with noise levels in three out of 
four datasets, but not for Law School 
Admissions, and the feature 
importance backs up this result.



Subverting Fair Image Search with Generative Adversarial Perturbations

Conclusion
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Algorithm Relative Metric performance Baseline Stability Robustness to Noise

LR ✅ ✅ ❌

RF ✅ ✅ ❌

SREW ✅ ✅ ✅

ADDEB ✅ ❌ ✅

LFR ❌ ❌ ❌

CALEQ ❌ ❌ ❌

ROC ❌ ❌ ❌

EGR ✅ ✅ ✅

GSR ❌ ✅ ✅

PRIV ✅ ✅ ✅

MDRO ❌ ❌ ✅

SOFT ❌ ❌ ❌

ARL ✅ ✅ ✅

DRO ❌ ❌ ❌
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Subverting Fair Image Search with Generative Adversarial Perturbations

Conclusion

● Four fair classifiers performed consistently well across metrics: Sample Reweighting 
(SREW), Exponentiated Gradient Reduction (EGR), Private Learning (PRIV), and 
Adversarially Reweighted Learning (ARL).

● Overall findings are a mixed bag: Some classical fair classifiers may perform 
unexpectedly well in the face of noise, and some theoretically noise resistant algorithms 
do not perform well. 

● Regardless, demographic-blind fair classifiers like ARL could achieve fairness for 
real-world disadvantaged groups under ecological conditions.

● While this exercise gives some confidence in using demographic-blind classifiers, we still 
need to continuously check model health in real time.
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DEEP DIVE: Sample Reweighting
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Faisal Kamiran and Toon Calders. 2012. Data preprocessing techniques for classification without discrimination. Knowledge and information 
systems



DEEP DIVE: Exponentiated Gradient Reduction
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 Alekh Agarwal, Alina Beygelzimer, Miroslav Dudík, John Langford, and Hanna Wallach. 2018. A reductions approach to fair classification. In 
International Conference on Machine Learning.

● This approach poses Fair Learning as a constrained optimization problem: minimize the 
empirical error, subject to linear constraints of the fairness (e.g., TPR difference, 
demographic parity).

● Solve the constrained optimization as a cost-sensitive classification problem. Specifically, 
the Lagrangian multiplier of the fairness constraint is obtained using the  exponentiated 
gradient algorithm (Kivinen & Warmuth, 1997). The algorithm is terminated as soon as the 
accuracy falls below a specified threshold.

● Obtain a randomized classifier, which implies they will create multiple base estimators.
● Note that it can potentially solve more than one constraint at a time, but with accuracy 

tradeoff.



DEEP DIVE: Private Learning
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Hussein Mozannar, Mesrob Ohannessian, and Nathan Srebro. 2020. Fair learning with private demographic data. In International Conference 
on Machine Learning.

● Say Z is a differentially private version of A, the protected feature.
● They start by dividing the data set S into two equal parts S1 and S2. 

The first step is to learn an approximately non-discriminatory 
predictor with respect to Z on S1 via the reductions approach of 
(Agarwal et al., 2018). This predictor has low error, but may be highly 
discriminatory.

● The aim of the second step is to produce a final predictor Y that 
corrects for this discrimination, without increasing its error by 
much. They modify the post-processing procedure of (Hardt et al., 
2016) to get non-discrimination with respect to A directly for the 
derived predictor Ye = f(Y , Z ˆ ). The predictor in the second step 
does use Z, however with a careful analysis they are able to show 
that it indeed guarantees non-discrimination with respect to A.



DEEP DIVE: Adversarially Reweighted Learning
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Preethi Lahoti, Alex Beutel, Jilin Chen, Kang Lee, Flavien Prost, Nithum Thain, Xuezhi Wang, and Ed Chi. 2020. Fairness without demographics 
through adversarially reweighted learning. Advances in neural information processing systems.

● Adversarially Reweighted Learning (ARL) is an 
optimization approach that leverages the notion of 
computationally-identifiable errors through an adversary 
fφ(X, Y ) to improve worst-case performance over 
unobserved protected groups S. 

● A minimax game between a learner and adversary: Both 
learner and adversary are learnt models, trained 
alternatively. The learner optimizes for the main 
classification task, and aims to learn the best parameters 
θ that minimizes expected loss. The adversary learns a 
function mapping fφ : X × Y → [0, 1] to 
computationally-identifiable regions with high loss, and 
makes an adversarial assignment of weight vector λφ : fφ 
→ R so as to maximize the expected loss. 
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Research Questions

● RQ1: How does noise in demographic information as an input to a fair ML algorithm adversely 
impact the intended fairness of the outcomes for different subgroups?

● RQ2: How can fair ML models be attacked by adversarial actors to create even more unfairness?

● RQ3: In fair ML techniques that deliberately do not use protected attributes, how do their 
theoretical guarantees hold up in real life when compared against actual ground truth?

● RQ4: Do fair ML models, once deployed in a production system, continue to remain fair in the face 
of changing data and feature-output relationships? If so, how can such unfairness be measured 
and mitigated?
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Drift in Machine Learning

FairCanary: Rapid Continuous Explainable Fairness 62

Once trained and deployed models might become stale over time:

• Data drift occurs when the runtime data is significantly different from the 
training data, by  virtue of the constant changing of real world data

• Concept drift occurs when the relationship between the model output and the 
feature



Model Monitoring

FairCanary: Rapid Continuous Explainable Fairness 63

In general, commercial model monitoring systems 
offer the  following features:

• Continuously record model inputs and model 
predictions.

• Measure and report traditional performance metrics 
over  time, like precision, recall, and accuracy.



Model Monitoring
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In general, commercial model monitoring systems 
offer the  following features:

• Continuously record model inputs and model 
predictions.

• Measure and report traditional performance metrics 
over  time, like precision, recall, and accuracy.

• Calculate and record feature-level explanations 
using  techniques like LIME or SHAP, which are 
useful for  post-mortem analysis if problems are 
observed.

• Generate alarms if particular metrics fall below an  
operator-specified threshold.



Model Monitoring

FairCanary: Rapid Continuous Explainable Fairness 65

• However, these commercial systems do not 
provide featurewise explanations for unfairness, 
even though  like any other metric, fairness 
might drift over time.

• I describe a system in this paper to reuse the 
model  output explanations provided by 
continuous model  monitoring systems to also 
provide continuous fairness  explanations.



Why Conventional Metrics Might Be Unsuitable
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Probability distribution plots for two hypothetical demographic groups. As demonstrated by 
the CDF plot on the right, at a  threshold of x = 10 the positive prediction probability for both 
groups is about 0.95, thereby satisfying Demographic Parity but this is misleading: the 
Wasserstein distance is nonzero since the two distributions have markedly different shapes.
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Distributional Difference based metrics for continuous outputs

Metric/Framework Related Terms CO? E?

Demographic parity mean difference, demographic parity, disparate treatment ✗ ✗

Conditional statistical parity statistical parity, conditional procedure accuracy, disparate treatment ✗ ✗

Equalized odds equalized odds, false positive/negative parity, disparate treatment ✗ ✗

Equal opportunity equality of opportunity, individual fairness, disparate treatment ✗ ✗

Counterfactual fairness counterfactual fairness, disparate treatment, fliptest ✗ ✗

Statistical independence HGR coefficient, independence ✓ ✗

Distributional difference KL divergence, JS Divergence, Wasserstein distance ✓ ✓

Summary showing whether conventional classes of fairness metrics support Continuous Output (CO) and feature-level  
Explanations (E). Metric families are inspired by (Mehrabi et al. 2019) and the related terminology is from (Das et al. 2021).

#
#
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Desirable Properties

We now discuss a few desirable properties of a distributional difference fairness metric that 
fit our stated  objectives:

● The metric should be in the units of the model’s prediction scores
● The metric should take the value zero only if the prediction distributions being 

compared  are exactly the same
● The metric should be continuous with respect to changes in the geometry of the  

distribution
● The metric should be non-invariant with respect to monotone transformations of the  

distributions (eg if all points are multiplied by K, the metric also shifts by K)



QDD: Quantile Demographic Disparity
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Wasserstein’s Distance (Earth Mover’s Distance) - Optimal Transport



QDD: Quantile Demographic Disparity
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Say we have two score distributions S1 and S2 for two groups G1 and G2 



QDD: Quantile Demographic Disparity
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We split the two distributions into B bins of equal size (similar to percentiles). 
Each bin has N1 items from G1 and N2 items from G2



QDD: Quantile Demographic Disparity

FairCanary: Rapid Continuous Explainable Fairness 73

Let’s look at one bin, b



QDD: Quantile Demographic Disparity
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QDD for bin b = Mean value of S1 in bin b - Mean value of S2 in bin b



QDD: Quantile Demographic Disparity
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QDD for bin b = Mean value of S1 in bin b - Mean value of S2 in bin b



QDD Attribution

FairCanary: Rapid Continuous Explainable Fairness 76

QDD Attributions/Explanations reuse per-prediction explanations 
that are already calculated and stored

Age = 65

BMI = 40

WBC = 5000

BP = 180



QDD Attribution
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QDDA for bin b, feature f = Mean value of feature atts. for S1  in bin b - Mean 
value of feature atts. for S2 in bin b

Age

BMI

WBC

BP



QDD Attribution
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Age

BMI

WBC

BP

QDDA for bin b, feature f = Mean value of feature atts. for S1  in bin b - Mean 
value of feature atts. for S2 in bin b



QDD Attribution
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Sum of attributes of QDDA = QDD! 

Age

BMI

WBC

BP



Schematic
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Schematic
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1. Monitors the inputs and outputs of a trained model over time



Schematic
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1. Monitors the inputs and outputs of a trained model over time
2. Identifies bias



Schematic
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1. Monitors the inputs and outputs of a trained model over time
2. Identifies bias
3. Alerts the developer



Schematic
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1. Monitors the inputs and outputs of a trained model over time
2. Identifies bias
3. Alerts the developer
4. Assists in Mitigation



Case Study
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ValuesFeature

Location

Distribution

70:30{‘Springfield’, ‘Centerville’}
Education  
Engineer Type  
Experience (Years)
Relevant Experience (Years)  
Gender

{‘GRAD’, ‘POST GRAD’} 80:20
85:15
Normal Distribution  
Normal Distribution  
50:50

{‘Software’, ‘Hardware’}
(0, 50)
(0, 50)
{‘MAN’, ‘WOMAN’}

Salary = 50,000 + (20,000 × location) + (20, 000 × education) + (5,000 × relevant experience)
+(100 × experience) + (10,000 × engineer type)
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ValuesFeature

Location

Distribution

70:30{‘Springfield’, ‘Centerville’}
Education  
Engineer Type  
Experience (Years)
Relevant Experience (Years)  
Gender

{‘GRAD’, ‘POST GRAD’} 80:20
85:15
Normal Distribution  
Normal Distribution  
50:50

{‘Software’, ‘Hardware’}
(0, 50)
(0, 50)
{‘MAN’, ‘WOMAN’}

Salary = 50,000 + (20,000 × location) + (20, 000 × education) + (5,000 × relevant experience)
+(100 × experience) + (10,000 × engineer type)

I synthetically insert a data bug on Day 2, by converting every woman’s education to GRAD only.



Case Study
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QDD shows a steep drop on Day 
2, causing an alert.

The units of QDD are in dollars, 
showing that Women 
experience a salary difference 
of around $4000-6000 
relative to men.



Case Study
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The explanation of the alert 
clearly shows that Education 
was the rogue feature, 
helping the developer to fix 
the data bug.



Case Study
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Day One
DI

Day Two
DIThreshold       SPD SPD

0.00009
0.00911

1.00009
1.01749

-0.00556
-0.08290

0.99439
0.84569

0.00088 1.02876 -0.01049 0.65544

$50000
$100000
$200000

Statistical Parity Difference (SPD) and Disparate Impact (DI), against  different salary thresholds for the 
case study. The predictions on Day One were fair, while they were unfair to women on Day  Two. Only one 

metric catches the bias, and only at one threshold (highlighted in red).



Conclusion
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• I present a novel, efficient, metric called QDD, and a system that uses it, called FairCanary,  
that continuously measures and explains bias in deployed ML models.

• I show the system in action with a case study and compare it against existing metrics.

• The system is not 100% automated, and hyperparameters like number of bins, alert  
sensitivity, explanation  method, etc still need to be set. 

• I hope FairCanary provides a blueprint for model owners to responsibly measure and  
mitigate bias in large deployed systems in the wild. 
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Awareness vs Unawareness

Continuous Fairness

Broader Impact
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What’s Next?

Humans in the loop

● Biases can be made worse by humans in the 
loop of a fair ML model

● Humans such as training data annotators and 
final decision makers

● Task is to make fair models resilient to human 
bias
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What’s Next?

Machine Unlearning

● Generative Models such as CoPilot (for text) and 
Stable Diffusion (for AI Art) have been accused 
of stealing and reproducing copyrighted data

● Task: To come up with a computationally 
efficient way to make a trained model forget 
problematic training data without complete 
retraining
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