Responsible Machine Learning

Lecture 12: Algorithmic Debiasing

CS 4973-05

Fall 2023

Instructors: Avijit Ghosh ghosh.a@northeastern.edu Northeastern University, Boston, MA

Agenda

Fair Classification
 Fair Ranking

Fair Classification

Review of Fair Classification Definitions

• Variables

- Y is the true value (0 or 1 for binary classification)
- C is the algorithm's predicted value
- A is the protected attribute (gender, race, etc.)

Review of Fair Classification Definitions

• Variables

- Y is the true value (0 or 1 for binary classification)
- C is the algorithm's predicted value
- A is the protected attribute (gender, race, etc.)

• Definitions*

- Demographic Parity: P(C|A=0) = P(C|A=1)
- Equal Opportunity: P(C|A=0,Y=1) = P(C|A=1,Y=1)
- Equalized Odds: P(C|A=0,Y=y) = P(C|A=1,Y=y), for $y \in \{0,1\}$

Definitions to Metrics

• Definitions

- Demographic Parity: P(C|A=0) = P(C|A=1)
- Equal Opportunity: P(C|A=0,Y=1) = P(C|A=1,Y=1)
- Equalized Odds: P(C|A=0,Y=y) = P(C|A=1,Y=y), for $y \in \{0,1\}$

• Metrics

- Demographic Parity Difference:
- Equal Opportunity Difference:
- Equalized Odds Difference:

P(C|A=1) - P(C|A=0)

P(C|A=1,Y=1) - P(C|A=0,Y=1)

E[P(C|A=1,Y=y) - P(C|A=0,Y=y)]

General Debiasing Approaches

- Pre-processing
 - Transform the training data (e.g. re-sampling, collecting more data)

General Debiasing Approaches

- Pre-processing
 - Transform the training data (e.g. re-sampling, collecting more data)
- In-processing
 - Transform the learning algorithm (e.g. different objective function, add constraints)

General Debiasing Approaches

- Pre-processing
 - Transform the training data (e.g. re-sampling, collecting more data)
- In-processing
 - Transform the learning algorithm (e.g. different objective function, add constraints)
- Post-processing
 - Transform the predictions (e.g. different thresholds)

Sample Reweighting [1]: assign weights to individual data points, so the sample resembles what would have been generated by a "fair process"

Sample Reweighting [1]: assign weights to individual data points, so the sample resembles what would have been generated by a "fair process"

Sex	Ethnicity	Highest degree	Job type	Cl.	Weight
M	Native	H. school	Board	+	0.75
М	Native	Univ.	Board	+	0.75
М	Native	H. school	Board	+	0.75
Μ	Non-nat.	H. school	Healthcare	+	0.75
М	Non-nat.	Univ.	Healthcare	_	2
F	Non-nat.	Univ.	Education	_	0.67
F	Native	H. school	Education	_	0.67
F	Native	None	Healthcare	+	1.5
F	Non-nat.	Univ.	Education	—	0.67
F	Native	H. school	Board	+	1.5

[1] Kamiran, Faisal, and Toon Calders. "Data preprocessing techniques for classification without discrimination." *Knowledge and information systems* 33.1 11 (2012): 1-33.

Sample Reweighting [1]: assign weights to individual data points, so the sample resembles what would have been generated by a "fair process"

Sex	Ethnicity	Highest degree	Job type	Cl.	Weight
М	Native	H. school	Board	+	0.75
М	Native	Univ.	Board	+	0.75
М	Native	H. school	Board	+	0.75
М	Non-nat.	H. school	Healthcare	+	0.75
М	Non-nat.	Univ.	Healthcare	-	2
F	Non-nat.	Univ.	Education	—	0.67
F	Native	H. school	Education	—	0.67
F	Native	None	Healthcare	+	1.5
F	Non-nat.	Univ.	Education	—	0.67
F	Native	H. school	Board	+	1.5

For
$$a \in A, y \in Y$$

 $w(a, y) = \frac{P(\text{expected})}{P(\text{observed})}$
 $w(a, y) = \frac{P(A = a)P(Y = y)}{P(A = a \land Y = y)}$

[1] Kamiran, Faisal, and Toon Calders. "Data preprocessing techniques for classification without discrimination." *Knowledge and information systems* 33.1 12 (2012): 1-33.

Sample Reweighting [1]: assign weights to individual data points, so the sample resembles what would have been generated by a "fair process"

Sex	Ethnicity	Highest degree	Job type	C1.	Weight
М	Native	H. school	Board	+	0.75
М	Native	Univ.	Board	+	0.75
М	Native	H. school	Board	+	0.75
Μ	Non-nat.	H. school	Healthcare	+	0.75
Μ	Non-nat.	Univ.	Healthcare	-	2
F	Non-nat.	Univ.	Education	<u> </u>	0.67
F	Native	H. school	Education	<u> </u>	0.67
F	Native	None	Healthcare	+	1.5
F	Non-nat.	Univ.	Education	—	0.67
F	Native	H. school	Board	+	1.5

Expected "fair" probabilities

•
$$P(A = M) P(Y = +) = 0.3$$

•
$$P(A = M) P(Y = -) = 0.2$$

•
$$P(A = F) P(Y = +) = 0.3$$

•
$$P(A = F) P(Y = -) = 0.2$$

[1] Kamiran, Faisal, and Toon Calders. "Data preprocessing techniques for classification without discrimination." *Knowledge and information systems* 33.1 13 (2012): 1-33.

Sample Reweighting [1]: assign weights to individual data points, so the sample resembles what would have been generated by a "fair process"

Sex	Ethnicity	Highest degree	Job type	C1.	Weight
М	Native	H. school	Board	+	0.75
М	Native	Univ.	Board	+	0.75
М	Native	H. school	Board	+	0.75
Μ	Non-nat.	H. school	Healthcare	+	0.75
Μ	Non-nat.	Univ.	Healthcare	_	2
F	Non-nat.	Univ.	Education	—	0.67
F	Native	H. school	Education	-	0.67
F	Native	None	Healthcare	+	1.5
F	Non-nat.	Univ.	Education	—	0.67
F	Native	H. school	Board	+	1.5

Observed probabilities:

•
$$P(A = M \land Y = +) = 0.4$$

•
$$P(A = M \land Y = -) = 0.1$$

•
$$P(A = F \land Y = +) = 0.2$$

•
$$P(A = F \land Y = -) = 0.3$$

[1] Kamiran, Faisal, and Toon Calders. "Data preprocessing techniques for classification without discrimination." *Knowledge and information systems* 33.1 14 (2012): 1-33.

Sample Reweighting [1]: assign weights to individual data points, so the sample resembles what would have been generated by a "fair process"

Sex	Ethnicity	Highest degree	Job type	Cl.	Weight
М	Native	H. school	Board	+	0.75
М	Native	Univ.	Board	+	0.75
Μ	Native	H. school	Board	+	0.75
М	Non-nat.	H. school	Healthcare	+	0.75
Μ	Non-nat.	Univ.	Healthcare	-	2
F	Non-nat.	Univ.	Education	_	0.67
F	Native	H. school	Education	<u> </u>	0.67
F	Native	None	Healthcare	+	1.5
F	Non-nat.	Univ.	Education	—	0.67
F	Native	H. school	Board	+	1.5

Weights

•
$$w(A = M, Y = -) = 0.2/0.1 = 2$$

[1] Kamiran, Faisal, and Toon Calders. "Data preprocessing techniques for classification without discrimination." *Knowledge and information systems* 33.1 15 (2012): 1-33.

In-processing Example

Adversarial Debiasing [2]: maximize the model's ability to predict the output, while minimizing the adversary's ability to predict the protected attribute

[2] Zhang, Brian Hu, Blake Lemoine, and Margaret Mitchell. "Mitigating unwanted biases with adversarial learning." *Proceedings of the 2018 AAAI/ACM* 1 *Conference on AI, Ethics, and Society.* 2018.

In-processing Example

Adversarial Debiasing [2]: maximize the model's ability to predict the output, while minimizing the adversary's ability to predict the protected attribute

Predictor Model

- learns function y = f(x)
- minimizes loss $L_p(\hat{y}, y)$

[2] Zhang, Brian Hu, Blake Lemoine, and Margaret Mitchell. "Mitigating unwanted biases with adversarial learning." Proceedings of the 2018 AAAI/ACM 1 Conference on AI, Ethics, and Society. 2018.

In-processing Example

Adversarial Debiasing [2]: maximize the model's ability to predict the output, while minimizing the adversary's ability to predict the protected attribute

Adversary Model

- learns function z = g(y)
- minimizes loss $L_A(\hat{z}, z)$

[2] Zhang, Brian Hu, Blake Lemoine, and Margaret Mitchell. "Mitigating unwanted biases with adversarial learning." *Proceedings of the 2018 AAAI/ACM* 1 *Conference on AI, Ethics, and Society.* 2018.

Post-processing Example

Equalized Odds Post-processing [3]: optimize a constrained linear program that is a function of Y, C (they call it \hat{Y}), and A

[3] Hardt, Moritz, Eric Price, and Nati Srebro. "Equality of opportunity in supervised learning." Advances in neural information processing systems 29 (2016)

Fair Ranking

Fair Ranking Motivation

Fair Ranking Differences

What are differences between classification and ranking that might be important for fairness?

Fair Ranking Differences

- Selecting a ranked list instead of making individual classifications
- Evaluating items relatively instead of independently

Ranking Bias Metrics

Representation Based

$$Skew_{group,k} = \frac{Fraction \ of \ group \ members \ in \ top \ K}{Fraction \ of \ group \ members \ overall}$$

NDKL = Normalised Discounted KL divergence between the group distributions in top K and overall population

The ideal value for Skew is 1, and NDKL is 0

Setup: Evaluation Metrics

Exposure Based

Attention_p@
$$k(\tau) = 100 \times (1-p)^{k-1} \times (p)$$

 $ABR = \frac{Attention \ of \ group \ with \ min. \ avg \ attention}{Attention \ of \ group \ with \ max. \ avg \ attention}$

Setup: Evaluation Metrics

Exposure Based

Attention_p@
$$k(\tau) = 100 \times (1-p)^{k-1} \times (p)$$

 $ABR = \frac{Attention \ of \ group \ with \ min. \ avg \ attention}{Attention \ of \ group \ with \ max. \ avg \ attention}$

The ideal value for ABR is 1

Setup: Evaluation Metrics

Ranking Quality

$$DCG_n = \sum_{i=1}^{n} \frac{rel_i}{\log_2^{i+1}},$$
$$NDCG_n = \frac{DCG_n}{IDCG_n},$$

The ideal value for NDCG is this case is 1

NDCG - Normalized Discounted Cumulative Gain, very popular in IR Literature to measure ranking quality.

Fair Ranking: LinkedIn Example

Step 1: retrieve top-k candidates, compute their gender distribution

[4] Geyik, Sahin Cem, Stuart Ambler, and Krishnaram Kenthapadi. "Fairness-aware ranking in search & recommendation systems with application to linkedin talent search." *Proceedings of the 25th acm sigkdd international conference on knowledge discovery & data mining*. 2019.

Fair Ranking: LinkedIn Example

Step 2: re-rank top-k candidates so exposure of groups matches gender distribution

[4] Geyik, Sahin Cem, Stuart Ambler, and Krishnaram Kenthapadi. "Fairness-aware ranking in search & recommendation systems with application to linkedin talent search." *Proceedings of the 25th acm sigkdd international conference on knowledge discovery & data mining*. 2019.

Fair Ranking: LinkedIn Example

Step 2: re-rank top-k candidates so exposure of groups matches gender distribution

Caveat: LinkedIn's algorithm only intervenes with respect to gender!

[4] Geyik, Sahin Cem, Stuart Ambler, and Krishnaram Kenthapadi. "Fairness-aware ranking in search & recommendation systems with application to linkedin talent search." *Proceedings of the 25th acm sigkdd international conference on knowledge discovery & data mining*. 2019.

Fair Classification and Ranking Challenges

- What if we don't have access to demographic labels?
- We want to achieve fairness with respect to multiple, intersectional protected attributes.
- We often want to prioritize underrepresented groups, instead of simply equalizing a metric across groups

Thank You!

