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1. Fair Classification
2. Fair Ranking
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Review of Fair Classification Definitions

● Variables
○ Y is the true value (0 or 1 for binary classification)
○ C is the algorithm's predicted value
○ A is the protected attribute (gender, race, etc.)
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Review of Fair Classification Definitions

● Variables
○ Y is the true value (0 or 1 for binary classification)
○ C is the algorithm's predicted value
○ A is the protected attribute (gender, race, etc.)

● Definitions*
○ Demographic Parity: P(C|A=0) = P(C|A=1) 
○ Equal Opportunity: P(C|A=0,Y=1) = P(C|A=1,Y=1) 
○ Equalized Odds: P(C|A=0,Y=y) = P(C|A=1,Y=y), for y ∈ {0,1} 

* “A Survey on Bias and Fairness in Machine Learning” has even more definitions. 
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Definitions to Metrics

● Definitions
○ Demographic Parity: P(C|A=0) = P(C|A=1) 
○ Equal Opportunity: P(C|A=0,Y=1) = P(C|A=1,Y=1) 
○ Equalized Odds: P(C|A=0,Y=y) = P(C|A=1,Y=y), for y ∈ {0,1} 

● Metrics
○ Demographic Parity Difference: P(C|A=1) - P(C|A=0) 
○ Equal Opportunity Difference: P(C|A=1,Y=1) - P(C|A=0,Y=1) 
○ Equalized Odds Difference: E[P(C|A=1,Y=y) - P(C|A=0,Y=y)]
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General Debiasing Approaches

● Pre-processing
○ Transform the training data (e.g. re-sampling, collecting more data)
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General Debiasing Approaches

● Pre-processing
○ Transform the training data (e.g. re-sampling, collecting more data)

● In-processing
○ Transform the learning algorithm (e.g. different objective function, add constraints) 
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General Debiasing Approaches

● Pre-processing
○ Transform the training data (e.g. re-sampling, collecting more data)

● In-processing
○ Transform the learning algorithm (e.g. different objective function, add constraints)

● Post-processing
○ Transform the predictions (e.g. different thresholds)
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Pre-processing Example

Sample Reweighting [1]: assign weights to individual data points, so the sample 
resembles what would have been generated by a “fair process” 

[1] Kamiran, Faisal, and Toon Calders. "Data preprocessing techniques for classification without discrimination." Knowledge and information systems 33.1 
(2012): 1-33.
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Pre-processing Example

Sample Reweighting [1]: assign weights to individual data points, so the sample 
resembles what would have been generated by a “fair process” 

[1] Kamiran, Faisal, and Toon Calders. "Data preprocessing techniques for classification without discrimination." Knowledge and information systems 33.1 
(2012): 1-33.
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Pre-processing Example

Sample Reweighting [1]: assign weights to individual data points, so the sample 
resembles what would have been generated by a “fair process” 

[1] Kamiran, Faisal, and Toon Calders. "Data preprocessing techniques for classification without discrimination." Knowledge and information systems 33.1 
(2012): 1-33.
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Pre-processing Example

Sample Reweighting [1]: assign weights to individual data points, so the sample 
resembles what would have been generated by a “fair process” 

[1] Kamiran, Faisal, and Toon Calders. "Data preprocessing techniques for classification without discrimination." Knowledge and information systems 33.1 
(2012): 1-33.

Expected “fair” probabilities
● P(A = M) P(Y = +) = 0.3
● P(A = M) P(Y = -) = 0.2
● P(A = F) P(Y = +) = 0.3
● P(A = F) P(Y = -) = 0.2
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Pre-processing Example

Sample Reweighting [1]: assign weights to individual data points, so the sample 
resembles what would have been generated by a “fair process” 

[1] Kamiran, Faisal, and Toon Calders. "Data preprocessing techniques for classification without discrimination." Knowledge and information systems 33.1 
(2012): 1-33.

Observed probabilities:
● P(A = M ⋀ Y = +) = 0.4
● P(A = M ⋀ Y = -) = 0.1
● P(A = F ⋀ Y = +) = 0.2
● P(A = F ⋀ Y = -) = 0.3
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Pre-processing Example

Sample Reweighting [1]: assign weights to individual data points, so the sample 
resembles what would have been generated by a “fair process” 

[1] Kamiran, Faisal, and Toon Calders. "Data preprocessing techniques for classification without discrimination." Knowledge and information systems 33.1 
(2012): 1-33.

Weights
● w(A = M, Y = +) = 0.3/0.4 = 0.75
● w(A = M, Y = -) = 0.2/0.1 = 2
● w(A = F, Y = +) = 0.3/0.2 = 1.5
● w(A = F, Y = -) = 0.2/0.3 = 0.67
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In-processing Example

Adversarial Debiasing [2]: maximize the model’s ability to predict the output, while 
minimizing the adversary’s ability to predict the protected attribute

[2] Zhang, Brian Hu, Blake Lemoine, and Margaret Mitchell. "Mitigating unwanted biases with adversarial learning." Proceedings of the 2018 AAAI/ACM 
Conference on AI, Ethics, and Society. 2018.
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In-processing Example

Adversarial Debiasing [2]: maximize the model’s ability to predict the output, while 
minimizing the adversary’s ability to predict the protected attribute

[2] Zhang, Brian Hu, Blake Lemoine, and Margaret Mitchell. "Mitigating unwanted biases with adversarial learning." Proceedings of the 2018 AAAI/ACM 
Conference on AI, Ethics, and Society. 2018.

Predictor Model
● learns function y = f(x)
● minimizes loss Lp(ŷ, y) 
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In-processing Example

Adversarial Debiasing [2]: maximize the model’s ability to predict the output, while 
minimizing the adversary’s ability to predict the protected attribute

[2] Zhang, Brian Hu, Blake Lemoine, and Margaret Mitchell. "Mitigating unwanted biases with adversarial learning." Proceedings of the 2018 AAAI/ACM 
Conference on AI, Ethics, and Society. 2018.

Adversary Model
● learns function z = g(y)
● minimizes loss LA(ẑ, z) 
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Post-processing Example

Equalized Odds Post-processing [3]: optimize a constrained linear program that is a 
function of Y, C (they call it Ŷ) , and A 

[3] Hardt, Moritz, Eric Price, and Nati Srebro. "Equality of opportunity in supervised learning." Advances in neural information processing systems 29 (2016).



Fair Ranking
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Fair Ranking Motivation
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Fair Ranking Differences

What are differences between classification and ranking that might be important for 
fairness?
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Fair Ranking Differences

● Selecting a ranked list instead of making individual classifications
● Evaluating items relatively instead of independently 

[4] Zehlike, Meike, Ke Yang, and Julia Stoyanovich. "Fairness in ranking: A survey." arXiv preprint arXiv:2103.14000 (2021).



Ranking Bias Metrics

Representation Based 

The ideal value for Skew is 1, and NDKL is 0



Setup: Evaluation Metrics

Exposure Based



Setup: Evaluation Metrics

Exposure Based

The ideal value for ABR is 1



Setup: Evaluation Metrics

Ranking Quality

The ideal value for NDCG is this case is 1

NDCG - Normalized Discounted 
Cumulative Gain, very popular in IR 
Literature to measure ranking quality.
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Fair Ranking: LinkedIn Example

[4] Geyik, Sahin Cem, Stuart Ambler, and Krishnaram Kenthapadi. "Fairness-aware ranking in search & recommendation systems with application to linkedin 
talent search." Proceedings of the 25th acm sigkdd international conference on knowledge discovery & data mining. 2019.

Step 1: retrieve top-k candidates, compute their gender distribution
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Fair Ranking: LinkedIn Example

[4] Geyik, Sahin Cem, Stuart Ambler, and Krishnaram Kenthapadi. "Fairness-aware ranking in search & recommendation systems with application to linkedin 
talent search." Proceedings of the 25th acm sigkdd international conference on knowledge discovery & data mining. 2019.

Step 2: re-rank top-k candidates so exposure of groups matches gender distribution 
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Fair Ranking: LinkedIn Example

[4] Geyik, Sahin Cem, Stuart Ambler, and Krishnaram Kenthapadi. "Fairness-aware ranking in search & recommendation systems with application to linkedin 
talent search." Proceedings of the 25th acm sigkdd international conference on knowledge discovery & data mining. 2019.

Step 2: re-rank top-k candidates so exposure of groups matches gender distribution 

Caveat: LinkedIn’s algorithm only intervenes with respect to gender!
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Fair Classification and Ranking Challenges

● What if we don’t have access to demographic labels?
● We want to achieve fairness with respect to multiple, intersectional protected 

attributes. 
● We often want to prioritize underrepresented groups, instead of simply 

equalizing a metric across groups



Thank You!
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